#define VIRTUAL_MEMORY_BASE ((void*)0x0000010000000000ULL) void* heap_alloc(u64); void heap_dealloc(void*); void* heap_allocator_proc(u64 size, void *p, Allocator_Message message) { switch (message) { case ALLOCATOR_ALLOCATE: { return heap_alloc(size); break; } case ALLOCATOR_DEALLOCATE: { heap_dealloc(p); return 0; } } return 0; } void os_init(u64 program_memory_size) { SYSTEM_INFO si; GetSystemInfo(&si); os.granularity = cast(u64)si.dwAllocationGranularity; os.page_size = cast(u64)si.dwPageSize; program_memory_mutex = os_make_mutex(); os_grow_program_memory(program_memory_size); Allocator heap_allocator; heap_allocator.proc = heap_allocator_proc; heap_allocator.data = 0; context.allocator = heap_allocator; } bool os_grow_program_memory(u64 new_size) { os_lock_mutex(program_memory_mutex); // #Sync if (program_memory_size >= new_size) { os_unlock_mutex(program_memory_mutex); // #Sync return true; } bool is_first_time = program_memory == 0; if (is_first_time) { u64 aligned_size = (new_size+os.granularity) & ~(os.granularity); void* aligned_base = (void*)(((u64)VIRTUAL_MEMORY_BASE+os.granularity) & ~(os.granularity-1)); u64 m = aligned_size & os.granularity; assert(m == 0); program_memory = VirtualAlloc(aligned_base, aligned_size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); if (program_memory == 0) { os_unlock_mutex(program_memory_mutex); // #Sync return false; } program_memory_size = aligned_size; } else { void* tail = (u8*)program_memory + program_memory_size; u64 m = ((u64)program_memory_size % os.granularity); assert(m == 0, "program_memory_size is not aligned to granularity!"); m = ((u64)tail % os.granularity); assert(m == 0, "Tail is not aligned to granularity!"); u64 amount_to_allocate = new_size-program_memory_size; amount_to_allocate = ((amount_to_allocate+os.granularity)&~(os.granularity-1)); m = ((u64)amount_to_allocate % os.granularity); assert(m == 0, "amount_to_allocate is not aligned to granularity!"); // Just keep allocating at the tail of the current chunk void* result = VirtualAlloc(tail, amount_to_allocate, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); if (result == 0) { os_unlock_mutex(program_memory_mutex); // #Sync return false; } assert(tail == result, "It seems tail is not aligned properly. o nein"); program_memory_size += amount_to_allocate; m = ((u64)program_memory_size % os.granularity); assert(m == 0, "program_memory_size is not aligned to granularity!"); } os_unlock_mutex(program_memory_mutex); // #Sync return true; } Mutex_Handle os_make_mutex() { return CreateMutex(0, FALSE, 0); } void os_destroy_mutex(Mutex_Handle m) { CloseHandle(m); } void os_lock_mutex(Mutex_Handle m) { DWORD wait_result = WaitForSingleObject(m, INFINITE); switch (wait_result) { case WAIT_OBJECT_0: break; case WAIT_ABANDONED: break; default: assert(false, "Unexpected mutex lock result"); break; } } void os_unlock_mutex(Mutex_Handle m) { BOOL result = ReleaseMutex(m); assert(result, "Unlock mutex failed"); } DWORD WINAPI win32_thread_invoker(LPVOID param) { Thread *t = (Thread*)param; temporary_storage_init(); context = t->initial_context; t->proc(t); return 0; } Thread* os_make_thread(Thread_Proc proc) { Thread *t = (Thread*)alloc(sizeof(Thread)); t->id = 0; // This is set when we start it t->proc = proc; t->initial_context = context; return t; } void os_start_thread(Thread *t) { t->os_handle = CreateThread( 0, 0, win32_thread_invoker, t, 0, (DWORD*)&t->id ); assert(t->os_handle, "Failed creating thread"); } void os_join_thread(Thread *t) { WaitForSingleObject(t->os_handle, INFINITE); CloseHandle(t->os_handle); } void os_sleep(u32 ms) { Sleep(ms); } void os_yield_thread() { SwitchToThread(); } #include u64 os_get_current_cycle_count() { return __rdtsc(); } float64 os_get_current_time_in_seconds() { LARGE_INTEGER frequency, counter; if (!QueryPerformanceFrequency(&frequency) || !QueryPerformanceCounter(&counter)) { return -1.0; } return (double)counter.QuadPart / (double)frequency.QuadPart; }